Banerjee, S., & Lavie, A. (2005). METEOR: An Automatic metric for MT evaluation with improved correlation with human judgments.
Proceedings of ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for MT and/or Summarization.
https://www.aclweb.org/anthology/W05-0909.pdf
Beikmohammadi, Maryam, Alavi, Seyyed-Mohammad, Kaivanpanah, Shiva (2020). Learning-oriented Assessment of Reading: A Mixed Methods Study of Iranian EFL University Instructors’ Perceptions and Practices.
Journal of Foreign Language Research, 10 (2), 316-329.
https://jflr.ut.ac.ir/article_77098_en.html
Bowker, L. (2001). Towards a methodology for a corpus-based approach to translation evaluation. Meta: Translators' journal, 46(2). pp. 345-364.
Chi, M. T. (2006). Two approaches to the study of experts' characteristics. In K. A. Ericsson, N. Charness, P. Feltovich, & R. Hoffman, The Cambridge handbook of expertise and expert performance, (pp. 21-29).
Doddington, G. (2002). Automatic evaluation of machine translation quality using N-gram co-occurrence statistics. Proceedings of the Second International Conference on Human Language Technology, (pp. 138-145).
Gonzàlez, M., & Giménez, J. (2014). Asiya: An open toolkit for automatic machine translation (meta-)evaluation, Technical Manual, Version 3.0. Retrieved from TALP Research Center Project Management.
Hoffman, R., Ward, P., Feltovich, P. J., Dibello, L., Fiore, S. M., & Andrews, D. H. (2014). Accelerated expertise, training for high proficiency in a complex world. New York: Taylor & Francis.
Kiraly, D. (2000). A social constructivist approach to translator education, empowerment from theory to practice. London and New York: St. Jerome Publishing.
Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics Doklady, 8(10), 707–710.
Lin, C.-Y., & Och, F. J. (2004). Automatic evaluation of machine translation quality using longest common subsequence and skip-bigram statistics. ACL '04 Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics.
Melamed, I. D., Green, R., & Turian, J. (2003). Precision and recall of machine translation. Proceedings of the Joint Conference on Human Language Technology and the North American Chapter of the Association for Computational Linguistics.
Nießen, S., Och, F. J., Leusch, G., & Ney, H. (2000). An evaluation tool for machine translation: Fast evaluation for MT research. Proceedings of the 2nd International Conference on Language Resources and Evaluation.
Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). BLEU: A method for automatic evaluation of machine translation.
Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, (pp. 311-318). Philadelphia.
https://www.aclweb.org/anthology/P02-1040.pdf
Saldanha, G., & O'Brien, S. (2014). Research methodologies in translation studies. London and New York: Routledge, Taylor and Francis Group.
Snover, M., Dorr, B., Schwartz, R., Micciulla, L., & Makhoul, J. (2006). A study of translation edit rate with targeted human annotation. Proceedings of the 7th Conference of the Association for Machine Translation in the Americas, (pp. 223–231).
Weigle, S. C. (2011). Validation of automated scores of TOEFL iBT® tasks against nontest indicators of writing ability. TOEFL iBT® Research Report. ETS, Georgia State University, Atlanta.